Large deviations for Poisson random measures and processes with independent increments

نویسنده

  • C. Léonard
چکیده

Large deviation principles are proved for rescaled Poisson random measures. As a consequence, FreidlinWentzell type large deviations results for processes with independent increments are obtained in situations where exponential moments are infinite.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Asymptotic Behaviour of Probabilities of Small Deviations for Compound Cox Processes

The asymptotic behaviour of probabilities of small deviations has been investigated for various classes of stochastic processes. Asymptotics of probabilities of small deviations for sums of independent random variables and homogeneous processes with independent increments were found in Mogul’skii [1], Borovkov and Mogul’skii [2] and references therein. Note that the last class of processes incl...

متن کامل

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

On the Compound Poisson Distribution

exist. We shall prove that under certain conditions we obtain (1) as a limit distribution of double sequences of independent and infinitesimal random variables and apply this theorem to stochastic processes with independent increments. Theorem 1 Let ξn1, ξn2, . . . , ξnkn (n = 1, 2, . . .) be a double sequence of random variables. Suppose that the random variables in each row are independent, t...

متن کامل

Large Deviations Asymptotics and the Spectral Theory of Multiplicatively Regular Markov Processes

In this paper we continue the investigation of the spectral theory and exponential asymptotics of primarily discrete-time Markov processes, following Kontoyiannis and Meyn [34]. We introduce a new family of nonlinear Lyapunov drift criteria, which characterize distinct subclasses of geometrically ergodic Markov processes in terms of simple inequalities for the nonlinear generator. We concentrat...

متن کامل

Competing Particle Systems Evolving by I.I.D. Increments

We consider competing particle systems in R , i.e. random locally finite upper bounded configurations of points in R evolving in discrete time steps. In each step i.i.d. increments are added to the particles independently of the initial configuration and the previous steps. Ruzmaikina and Aizenman characterized quasi-stationary measures of such an evolution, i.e. point processes for which the j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004